DISTICHOL, AN ANTIBACTERIAL POLYPHENOL FROM SHOREA DISTICHA

M. Uvais S. Sultanbawa, Sivagnanasundram Surendrakumar* and Peter Bladont

Department of Chemistry, University of Peradeniya, Peradeniya, Sri Lanka; †Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, U.K.

(Revised received 28 August 1986)

Key Word Index Shorea disticha; Dipterocarpaceae; bark; distichol; antibacterial activity.

Abstract—The structure of distichol, a new hexadehydrotrimer of resveratrol isolated from the bark of Shorea disticha, has been established on the basis of spectroscopic evidence, chemical degradations and biosynthetic considerations.

INTRODUCTION

Several oligomeric stilbenols have been reported from the plant family Dipterocarpaceae [1-5], of which hopeaphenol (1) [6, 7] was the first, and its structure was established as a tetramer of 3,5,4'-trihydroxystilbene (resveratrol) by X-ray analysis [8]. In our continuing study of these polyphenols, we have isolated distichol (2) [9], a new hexadehydrotrimer of resveratrol, frm the bark of Shorea disticha (Thw.) Ashton. The plant also contains the dehydrodimer, \(\varepsilon\)-viniferin (3) reported previously from infected grapevine leaves (Vitis vinifera) [10] and Vatica affinis [3, 4].

RESULTS AND DISCUSSION

The cold acetone extracts of the bark, after chromatographic purification afforded distichol (2), [M]* 680.2027 (C₄₂H₃₂O₉). Its UV absorption λ_{max}^{MeOH} 281 (log ϵ 4.21) nm] was virtually the same as those of related polyphenols, and the spectrum was unaffected on addition of sodium acetate-boric acid which excluded the presence of *ortho* dihydric phenol structures. The IR (KBr) spectrum showed a broad band at 3200 cm⁻¹ (OH), aromatic absorption at 1600 cm⁻¹ and a prominent band at 830 cm⁻¹ indicative of 1:4 disubstituted benzene nuclei.

Distichol (2) formed an octamethylether, [M]^{*} 792.3310 ($C_{50}H_{48}O_9$) and an octametate. Therefore the remaining one oxygen atom was probably present as an ether group. The ¹³C NMR spectrum (acetone- d_6) of the parent compound (2) showed the following resonances: six doublets (δ_C 37-91 ppm) due to six aliphatic carbon atoms, six singlets (δ_C 155-161) for nine phenolic carbon atoms, 10 doublets (δ_C 97-131) assigned to a total of 18 aromatic carbon atoms, and nine singlets (δ_C 121-147) for nine quaternary carbon atoms. (The designations singlets and doublets refer to the appearance in single frequencey off-resonance proton decoupled experiments.) The high frequency ¹H NMR of distichol and its derivatives

The above data and the molecular formula of distichol $(C_{42}H_{32}O_9)$ showed that the polyphenol is probably formed by trimerization of resveratrol units (C14H12O3). The absence of any olefinic groups in distichol is evident from both the 1H and 13CNMR spectral features: the ¹³C NMR of distichol reveals six doublets for six aliphatic methine carbons, thus suggesting that all six olefinic carbons corresponding to the three resveratrol units are saturated and carry single protons. These six methine protons clearly showed resonances in the 1HNMR spectrum. Extensive homonuclear decoupling experiments of the ¹HNMR spectrum indicated that the methine protons at δ 5.84 (H₁) and δ 4.47 (H₂) are coupled to one another and the remaining four coupled protons are adjacent to each other (see partial structure 2a). The ¹H NMR spectrum of distichol showed resonances due to the presence of 18 aromatic protons out of a total of 21 aromatic protons from the three resveratrol units. This suggests that phenolic oxidative coupling has occurred at three aromatic positions. Thus it is probable that biogenetically distichol (2) is formed from the dehydrodimer of resveratrol (3) and a free resveratrol moiety (Scheme 1). The isolation of the dehydrodimer of resveratrol (Eviniferin) from the same extracts lends further support to the structure (2) assigned to distichol. The other biogenetically plausible structures were eliminated because of the absence of any unsaturated double bonds in the molecule. This narrows the possibilities to two, one of which has a nine-membered ring. However, this possibility does not satisfactorily explain the spectral behaviour.

Further evidence for the structure (2) of distichol included the formation of the following chemical degradative products: picric acid obtained by oxidation of 2 with concentrated nitric acid; 3-nitroanisic acid obtained by oxidation of the octamethyl ether of 2 with nitric acid; anisic acid obtained by oxidation of octamethyl ether of 2 with CrO₃-HOAc; and 4-hydroxybenzoic acid obtained by alkali fusion of 2 with NaOH-KOH (1:1) at 270°. (All these products were characterized by mp, mmp and comparison with authentic samples.)

799

showed clear resonances due to the presence of 18 aromatic protons and six coupled methine protons ($\delta_{\rm H}$ 3.60–5.85 ppm).

^{*}To whom correspondence should be addressed at: Department of Organic Chemistry, Queen's University of Belfast, Belfast BT9 5AG, U.K.

2

3

The proposed stereochemistry for distichol was chosen by comparison of a Dreiding model with the observed coupling constants (confirmed by decoupling experiments). The eight-membered ring is in the boat conformation, in agreement with the unique coupling 'through space' observed between the protons $\delta 4.47$ (H₂) and $\delta 3.65$ (H₄) (2a).

Distichol octamethyl ether gives characteristic odd electron fragmentations in the mass spectrometer at m/z 684 (84%), 538 (55) and 430 (24) due to cleavage of phenolmethyl ethers, benzylic methyl ethers and resveratrol moieties.

Both distichol (2) and ε-viniferin (3) isolated in this study showed antibacterial activity towards Oxford Staphylococcus and Escherichia coli when tested by the filter paper disc method in Mueller Hinton Agar medium. Resveratrol oligomers from Gnetum species have been studied by Lins et al. [11]. Probable assignments of ¹³C NMR chemical shifts based on substituent parameters are shown in structure 2.

EXPERIMENTAL

Dried, powdered bark (3.30 kg) of S. disticha collected in the Kanneliya rain forest in the South of Sri Lanka was exhaustively extracted with cold Me₂CO in the dark for 7 days. The filtrate was coned under reduced pressure to give a pale brown powder (275 g. 8.30%). The extract (30.0 g) was transferred to a column of

Scheme 1.

silica gel (Merck, 30-70 mesh) and eluted successively with C_0H_0 Me₂CO solvent mixtures for increasing polarity. The Me₂CO C_0H_0 (3:7) eluates yielded 3, mp 147-149° (191 mg) identified as ϵ -viniferin by comparison with the authentic sample previously isolated [3, 4].

Isolation of distichol (2). Elution with Me₂CO-C₆H₆ (2:3) afforded distichol as an off-white solid foam (5.68 g). This was further purified by prep. TLC (silica gel; PF 254) to give 2 as an amorphous solid, mp 266 268°, $[\alpha]_{0}^{25}$ -44° (MeOH). M° 680.2027 $(C_{42}H_{32}O_9)$ $(C_{42}H_{32}O_9$ requires M 680.2046). UV λ_{max}^{MeOH} nm (log ϵ); 281 (4.21). No shifts NaOAC H₃BO₃; IR v_{max} cm⁻¹: 3200, 1600, 1440, 1330, 1220, 1140, 1070, 1000, 920 and 830; 1H NMR (360 MHz, Me, CO-d, k 3.65 (1H, dd, J = 3.2 and 11.7 Hz, H-4), 3.76 (1H, dd, J = 11.7 and9.5 Hz, H-5), 4.25 (1H, d, J = 9.5 Hz, H-6) 4.47 (1H, d, J-11.7 Hz, H-2), 5.28 (1H, d, J = 3.2 Hz, H-3), 5.84 (1H, d, J= 11.7 Hz, H-1) and 6.15 7.35 (overlapping multiplets, 18 Ar-Hs); ¹³C NMR: see 2; MS m/z (rel. int.); 680 [M] * (35), 678 (29), 662 (25), 588 (29), 586 (52), 568 (16), 566 (15), 494 (39), 492 (27), 490 (13), 482 (47), 481 (16), 451 (16), 450 (47), 435 (40), 434 (68), 422 (33), 390 (47), 389 (13), 359 (17), 228 (48), 212 (36), 200 (36), 199 (20), 108 (36), 107 (56), 95 (45), 94 (100), 66 (68), 65 (64), 63 (32). When refluxed (36 hr) with Me₂SO₄ (1.0 ml), K₂CO₃ (1.5 g) and dry Me₂CO (25 ml) 2 (500 mg) gave an octamethyl ether, amorphous solid, mp 138 140 (496 mg; 85.2%), $[\alpha_D^{25} - 49^\circ]$ (CHCl₃), M^* 792.3310 ($C_{50}H_{48}O_9$) ($C_{50}H_{48}O_9$ requires M 792.3298); UV à CHC1, nm (log et 283 (4.04); IR v KBr cm 1: 2910, 2810, 1600, 1505, 1455, 1310 (br), 1245, 1195, 1170, 1150, 1060, 1030, 920, 830 and 690; 1 H NMR (270 MHz, CDCl₃): 3.53 (3H, s, OMe), 3.60 (3H, s, OMe), 3.70 (9H, s, 3 × OMe), 3.73 (6H, s, 2 × OMe), 3.80 (3H, s, OMe), 4.33 (1H, d, J = 10 Hz), 4.58 (1H, d, J = 6 Hz), 4.87 (m), 5.27 (1H, d, J = 2 Hz), 5.50 (1H, d, J = 10 Hz), 6.0-7.45 (m); MS, m/z (rel. int.): 792 [M] (65) 790 (48), 684 (100), 671 (17), 669 (16), 552 (35), 539 (32), 538 (55), 522 (35), 430 (24), 415 (15), 396 (19), 387 (24), 343 (43), 342 (59), 288 (49), 281 (20), 273 (37), 257 (9), 227 (32), 121 (36). 2 (200 mg) gave an octaacetate when treated with Ac₂O (1.0 ml) and C₃H₃N (3.0 ml) at room temp. (24 hr) solid with a glassy appearance, mp 162 164°, (180 mg, 61%), $[\alpha]_{0}^{25} = 15.2^{\circ}$ (MeOH); $1R \nu_{\text{MM}}^{\text{MM}}$ cm⁻¹: 2905, 1750, 1640, 1600, 1500, 1450 (*br*), 1365, 1180, 1120, 1070, 1020, 910, 840 and 670, 1 H NMR (270 MHz, CDCl₃); 1.66 (s, OAc), 1.83 (s, OAc), 2.23 (s, 2 × OAc), 2.26 (s, 4 × OAc), 3.90 (*dd*, 1H, J = 8 and 4 Hz), 4.26 (1H, m), 4.36 (*d*, 1H, J = 8 Hz), 4.43 (*d*, 1H, J = 11 Hz), 4.73 (1H, m), 5.90 (*d*, 1H, J = 11 Hz), 6.46 7.46 (*m*).

Acknowledgements We thank Professor S. Balasubramaniam, Department of Botany, University of Peradeniya, for the identification of plant material and University of Peradeniya, Sri Lanka for assistance.

REFERENCES

- Sultanbawa, M. U. S., Surendrakumar, S. and Bladon, P. (1980) J. Chem. Soc. Chem. Commun. 619.
- Sotheeswaran, S., Sultanbawa, M. U. S., Surendrakumar, S. and Bladon, P. (1983) J. Chem. Soc. Perkin Trans 1 699.
- Sultanbawa, M. U. S., Surendrakumar, S., Wazeer, M. I. M. and Bladon, P. (1981) J. Chem. Soc. Chem. Commun. 1204.
- Sotheeswaran, S., Sultanbawa, M. U. S., Surendrakumar, S., Balasubramaniam, S. and Bladon, P. (1985) J. Chem. Soc. Perkin Trans. 1 159.
- Diyasena, M. N. C., Sotheeswaran, S., Surendrakumar, S., Balasubramaniam, S., Bokel, M. and Kraus, W. (1985) J. Chem. Soc. Perkin Trans. I 1807.
- Coggon, P., Janes, N. F., King, F. E., King, T. J., Molyneux, R. J., Morgan, J. W. W. and Sellars, K. (1965) J. Chem. Soc. 406
- Madhav, R., Seshadri, T. R. and Subramaniam, G. B. V. (1967) Phytochemistry 6, 1155.
- Coggon, P., King, T. J. and Wallwork, S. C. (1966) J. Chem. Soc. Chem. Commun. 439.
- Sultanbawa, M. U. S., Surendrakumar, S. and Bladon, P. (1984) Fifth Asian Symposium on Medicinal Plants and Spices, Seoul, Korea, Abstr. C-27, 129.
- 10. Langcake, P. and Pryce, R. J. (1977) Experientia 33, 151
- Lins, A. P., Ribeiro, M. N. De S., Gottlieb, O. R. and Gottlieb, H. E. (1982) J. Nat Prod. 45, 754.